IFNβ secreted by microglia mediates clearance of myelin debris in CNS autoimmunity

نویسندگان

  • Magdalena Kocur
  • Reiner Schneider
  • Ann-Kathrin Pulm
  • Jens Bauer
  • Sonja Kropp
  • Michael Gliem
  • Jens Ingwersen
  • Norbert Goebels
  • Judith Alferink
  • Timour Prozorovski
  • Orhan Aktas
  • Stefanie Scheu
چکیده

INTRODUCTION Multiple sclerosis (MS) is a chronic demyelinating disorder of the central nervous system (CNS) leading to progressive neurological disability. Interferon β (IFNβ) represents a standard treatment for relapsing-remitting MS and exogenous administration of IFNβ exhibits protective effects in experimentally induced CNS autoimmunity. Also, genetic deletion of IFNβ in mice leads to an aggravation of disease symptoms in the MS model of experimental autoimmune encephalomyelitis (EAE). However, neither the underlying mechanisms mediating the beneficial effects nor the cellular source of IFNβ have been fully elucidated. RESULTS In this report, a subpopulation of activated microglia was identified as the major producers of IFNβ in the CNS at the peak of EAE using an IFNβ-fluorescence reporter mouse model. These IFNβ expressing microglia specifically localized to active CNS lesions and were associated with myelin debris in demyelinated cerebellar organotypic slice cultures (OSCs). In response to IFNβ microglia showed an enhanced capacity to phagocytose myelin in vitro and up-regulated the expression of phagocytosis-associated genes. IFNβ treatment was further sufficient to stimulate association of microglia with myelin debris in OSCs. Moreover, IFNβ-producing microglia mediated an enhanced removal of myelin debris when co-transplanted onto demyelinated OSCs as compared to IFNβ non-producing microglia. CONCLUSIONS These data identify activated microglia as the major producers of protective IFNβ at the peak of EAE and as orchestrators of IFNβ-induced clearance of myelin debris.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electroacupuncture Promotes Remyelination after Cuprizone Treatment by Enhancing Myelin Debris Clearance

Promoting remyelination is crucial for patients with demyelinating diseases including multiple sclerosis. However, it is still a circuitous conundrum finding a practical remyelinating therapy. Electroacupuncture (EA), originating from traditional Chinese medicine (TCM), has been widely used to treat CNS diseases all over the world, but the role of EA in demyelinating diseases is barely known. I...

متن کامل

CX3CR1 in multiple sclerosis

In a recent paper published in J. Ex. Med, we provided evidence that the knockout of CX3CR1 blocked the clearance of myelin debris by microglia, which greatly affected the integrity of axons and myelin sheaths, preventing proper remyelination. These results highlight the crucial role played by CX3CR1 in myelin removal and show that there can be no efficient remyelination following a primary dem...

متن کامل

Inefficient clearance of myelin debris by microglia impairs remyelinating processes

An imbalance between remyelinating and demyelinating rates underlies degenerative processes in demyelinating diseases such as multiple sclerosis. An optimal therapeutic strategy would be to stimulate remyelination while limiting demyelination. Although accumulation of myelin debris impairs remyelination, the mechanisms regulating the clearance of such debris by mononuclear phagocytic cells are ...

متن کامل

Microglia: Senescence Impairs Clearance of Myelin Debris

Growing evidence highlights the crucial physiological functions of microglia that rely on their phagocytic activities, which can be compromised with age. A new study reports the impaired clearance of myelin debris by microglia in the brain, leading to insoluble lysosomal inclusions and contributing to the immune dysfunction and senescence of these cells.

متن کامل

Phagocytosis of neuronal debris by microglia is associated with neuronal damage in multiple sclerosis.

Neuroaxonal degeneration is a pathological hallmark of multiple sclerosis (MS) contributing to irreversible neurological disability. Pathological mechanisms leading to axonal damage include autoimmunity to neuronal antigens. In actively demyelinating lesions, myelin is phagocytosed by microglia and blood-borne macrophages, whereas the fate of degenerating or damaged axons is unclear. Phagocytos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2015